The Flight to Perfection

Matthias Dolderer: flying instructor. Aerobatics legend. Air Race World Champion.

Cuban eight. Flick roll. Outside loop. When Matthias talks about aerobatics you can clearly hear his fascination for the sport. It’s his profession and his passion. For him, it has all the things he loves the most about flying as a pilot: speed, precision and skill.

“It’s the passion that gives you wings,” Matthias explains. “Plus, all the hard work I put in day after day, that is what helped me to launch my career. It all began at the local airfield when I was 5 years old. At the age of 10 I built my first model airplanes and four years later I took off for my first solo flight in a glider.” He remembers the emotions to this day and a hobby turned into a vocation. “I took part in an ultralight competition when I was 17 and won straight away. In addition to winning pride and passion, I felt that this is my future, my life.” He was a member of the national team at an early age, took part in European and World Championships and became Germany’s youngest flight instructor.

The combination of his passion for flying, obsession for perfection and being competitive from a young age made him fit perfectly into the world of air racing. A dream came true in 2009 when he took part in the Red Bull Air Race World Championship – the Formula 1 of the skies. “Only the best pilots qualify. I was ‘Best Rookie of the Year’. But even when you get there, you have to work hard every day, stay focused, learn from your setbacks and keep on improving.” The path to the winner’s rostrum was indeed long and hard, and it took a lot of resilience, determination and focus to get there. It all paid off in 2016, when he became the first and only German pilot ever to win this ultimate aviation sporting and speed spectacle. “It was amazing being one of the elite Air Race pilots, those madcap aviation enthusiasts, traveling the world, meeting new people and experiencing new cultures. Of course, the race itself is extreme. You have to fly your plane at speeds of up to 230 MPH just a few feet above the ground at the same time as navigating an obstacle course. It’s like trying to park a car in a garage at 250 MPH,” he laughs. “It isn’t just the adrenaline rush from flying at that speed that makes it so fascinating, but also the precision piloting of the plane. And you have to be in top mental and physical form.”

The Right Tool Watch

Technology obviously plays a crucial role in aviation. “When you’re in the air, you can still hear, see and feel. But sometimes the senses get confused. Especially when you’re upside down. That’s when I use the instruments for orientation. The plane’s look is also important to me. Both as a whole, and the details in the cockpit. That’s why my MARQ® Aviator is perfect for me. And it’s perfect in itself. Precision, perfection, design and style. It looks like an aircraft instrument. It’s kind of crazy how many things you can do with a tool watch these days: it gives me access to global aviator’s maps, it has a pre-flight check, routine check during the flight and even a direct-to navigation key and an off-course indicator. Pilots have an affinity with watches and to me the MARQ is the best fusion of aviation and everyday tools. In this way I can stay safe and efficient, and I have features like mails, alerts, Garmin Pay™, etc. on my wrist.”

Like everyone else, Matthias has been longing to travel again. “With a bag over my shoulder and my MARQ Aviator on my wrist. An alarm at 4 a.m. in the morning. Still pitch black. Clear, cold and tangy air. Silence. Isolation. Start. Take-off. At one with nature and the skies. Then, the miracle of dawn. A pink hue over the horizon. The fascination of flying at its finest,” he concluded with a content smile.

To explore the full MARQ collection, click here.

The post The Flight to Perfection appeared first on Garmin Blog.

What Is ED-155?

At Appareo we get A LOT of questions about ED-155. These questions are sometimes in reference to our recoverable data modules and other times in reference to our airborne image recorders

What Is ED-155?

At a really high level, ED-155 is the minimum operational performance specification for a lightweight flight data recording system. The specification was created in response to industry pressure to provide lighter flight recorders as smaller aircraft were increasingly receiving pressure to carry flight recorders, but the predominant international flight recorder standard at the time (ED-112) was constructed primarily to address requirements for air carriers to have onboard cockpit flight and data recorders. The accident dynamics (where the crash occurs, how much energy is in the crash, what the potential for fire size/duration may be) are much different on large jetliners when compared to helicopters or smaller fixed-wing business aircraft. Especially with consideration for rotorcraft, weight and size are at a premium and lighter solutions that more appropriately address the survivability requirements of a recorder in a smaller aircraft accident were necessary to be created. 

The specification was also created to encourage the modernization of flight data recording technologies, moving away from standards that support old recording media like magnetic tape.

How Is ED-155 Organized

The specification is constructed to cater to a variety of different data recording needs. It includes:

  • Generals standards applicable to all recorder types
  • Standards for Deployable Recorders
  • A description of requirements that cater to different kinds of recorders, including:
    • Cockpit Audio Recording Systems (CARS)
      • Think of this as a cockpit voice recorder, although the specification also includes ambient audio data acquisition
    • Aircraft Data Recording Systems (ADRS)
      • Think of this as a flight data recorder
    • Airborne Image Recording Systems (AIRS)
      • Think of this as a cockpit camera
    • Data-Link Recording Systems (DLRS)
      • Think of this as a cockpit voice recorder but for digital data that is transmitted and received rather than cockpit voice
    • Multi-Function Recording Systems
      • Think of this as a system that combines two or more of the functions above

The specification as a result provides a very comprehensive set of requirements that address almost any conceivable type of recording system. 

Why This Can Be Confusing

This is confusing because there are no specific international mandates that decompose some of the five different categories of ED-155 and call on a specific subset of requirements to be compliant with a standard. Rather, the standard provides guidelines for a variety of different systems. 

Tell Me About The General Standards

The general standards that address all recorder types include requirements for basic operation, safety, retention of recorded information, and survivability. The survivability standard covers requirements for impact/shock, crush, and flame survivability that are in excess of tests encountered in standards like RTCA DO-160. There is also a requirement that the survivable memory component of the flight recorder be bright orange and labeled with the words FLIGHT RECORDER in black letters. 

What a Deployable Recorder Is And How It Relates

A deployable recorder is a recorder that is designed to come free from an aircraft in an accident sequence. In general, the objective of these recorders is often to pair them with a locating beacon and a means of flotation to allow the recorder to float and be recovered independently of the wreckage for incidents that occur over deep water. These recorders are typically mounted on the exterior of the aircraft. In Appareo’s experience, the smaller nature of the aircraft that are often under consideration for ED-155 recorders has made it unusual for us to encounter interest in deployable recorders of this size. Regardless, the standard provides for additional environmental and survivability testing criteria for ED-155 compliant recorders designed with this feature in mind. 

What Is Considered A Cockpit Audio Recording System (CARS)

A CARS is a system that records both ambient area audio data (i.e. the noise inside the cockpit) as well as the pilot audio channel(s). The ambient area audio data allows accident investigators to listen to particulars of an incident, which can sometimes provide insights regarding aircraft mechanical failures (e.g. forensic analysis of turbine engine noise). The recording of pilot communications provides insights into pilot decision-making, communication between pilots, and interactions with air traffic control. In some recorder systems, the pilot audio channels and the cockpit area microphone data can be delivered by different system components. 

The specification declares the performance and recording requirements (e.g. total recording capacity, recording delay tolerances, etc) for both the ambient and pilot sources while adding requirements or provisions for other capabilities (e.g. requiring a build erase function to be present). The standard also provides for the test requirements and procedures necessary to demonstrate a CARS’ performance against the standard’s requirements. 

What is an Aircraft Data Recording System (ADRS)

An ADRS is a system that records digital flight data in an uncompressed format. The ED-155 standard allows for a variety of aircraft data sources, which is an effort to accommodate the wide variety of aircraft on which such recorders were intended to be installed. For example, acquiring flight data on helicopters that are not equipped with digital data buses as a portion of the avionic equipage may not be impractical – as a result, the standard allows for sensors interior to the ADRS to record such data (e.g. pitch/roll data from an IMU, GPS data, etc). Alternatively, a smaller aircraft used for business transport purposes may provide practical access to a digital data bus (e.g. ARINC 429) and the standard provides performance requirements for recording from such sources. 

Much like the CARS, the ADRS specification declares performance and recording requirements for the ADRS while also specifying which parameters must be recorded, and at what frequency, for a unit to qualify as an ADRS. 

What is an Aircraft Image Recording System (AIRS)

Aircraft image recording systems are equipment that is deployed for the intent of capturing image data regarding aircraft operation, which is typically then synchronized in time with the recording of other recorder types. For example, synchronizing AIRS with a CARS will provide synchronized playback of image and audio data from a flight. Likewise, synchronizing AIRS and ADRS can provide data to create synchronized cockpit videos with flight animations. 

The AIRS systems are separated into six different classes. The classes are described by alpha characters (A through F) and are organized as follows:

  1. This Class provides a general image of the cockpit including instruments and a view of the external environment (through the glareshield)
  2. This Class provides a recording of the data-link message display
  3. This Class provides for a means of recording flight data where it is not possible or prohibitively expensive to otherwise do so
  4. This Class provides a means for capturing heads up displays
  5. This Class provides a means of capturing other camera images present to pilots (e.g. as a means of capturing cargo or cabin views presented to pilots)
  6. This Class provides means for capturing an external view of the aircraft

The standard provides guidance for operational considerations, like what portions of the cockpit to capture in the image frame and provisions for data security/privacy (e.g. preventing AIRS data from being easily played back by non-investigative personnel, as well as performance requirements in the areas of recording capacity, recording delay, and image compression. 

What is a Data Link Recording Systems (DLRS)

Often when people refer to flight data recorders the physical interface between the flight data recorder and the aircraft is often done through ARINC 717. The objective of a DLRS is to record the messages passing to and from the aircraft via a digital means, which is typically accomplished using a standard avionic digital interface like ARINC429. In this manner, the DLRS is attempting to acquire information like data exchanged through CPDLC, digital ATIS, NOTAM delivery, etc. 

Although Appareo’s recording solutions (both AIRS and RDM) can support acquiring DLRS data we typically don’t list such recorders in our compliance tables because the FANS, CPDLC, and related on-aircraft features that necessitate and enable such recorders don’t typically appear in aircraft under consideration for ED-155 style, lighter, flight data recorders.

How does AIRS-400 Comply with ED-155?

AIRS can do all of the data acquisition and recording to show compliance to a variety of ED-155 requirements by itself, however, to show full compliance to the standard the camera needs to be hooked up to another module. This section of the document will further discuss why a second module MAY be required for some installations. For the overwhelming majority of AIRS installations a second module is not required because the AIRS cameras are:

  • Capable of surviving most aircraft accidents without one; and,
  • In most of the world, there is no regulatory requirement to specifically be equipped with such a recorder

The sections below discuss the ways in which the AIRS-400 is not compliant with the ED-155 standard and discuss why those noncompliances exist. Then, finally, a table will provide the combinations of AIRS-400 and other products that can be used to show full compliance to the ED-155 standard.

ED-155 | Non-Compliant Appearance

AIRS-400, in an off-the-shelf configuration, is not compliant with ED-155 section 2-1.14.4. This portion of the standard requires that the recorder be bright orange in color with black letters that say, “FLIGHT RECORDER.” In general, Appareo finds our customers to prefer a less obvious, intrusive, color for a product mounted within the cockpit in plain sight. It would be possible to create a variant of our AIRS that would be bright and orange and marked in this manner, but in general, Appareo finds that our customers do not want the camera marked in such a manner because they believe it looks bad in the cockpit. 

ED-155 | Non-compliant Survivability

In general, the AIRS-400 is significantly more survivable than our previous cockpit camera product, the Vision 1000. The product is not, however, compliant with ED-155 section 2-4.2.4. 

It is not compliant with this portion of the standard because compliance with the flame survivability requirement requires the presence of a phase change material, a material that is used to absorb the heat energy in the event of a fire. The mass of phase change material that is necessary to absorb the amount of heat energy products are subjected to in this test is roughly 4 times the volume, and 4 times the weight, of Appareo’s AIRS-400 product. This creates a large, unattractive, product package for mounting into the ceiling of a cockpit or flight deck. For a customer that requires ED-155 or ED-112 flame survivability, a recoverable memory module mounted in a more convenient location for a large, heavy product is the right architecture for the deployment of a flight data recording system. This provides the optimal flight data acquisition capability, with a visually attractive and high-performing camera solution providing digital data to a large, less attractive, recoverable module buried out of sight in the aircraft. 

ED-155 | Achieving Full Compliance Using Appareo’s New Recorder

Achieving full compliance with ED-155 is possible with AIRS-400 in a number of ways. The first, and perhaps easiest, is to connect the camera to a recoverable memory module of either Appareo or third-party manufacture. For example:

  1. AIRS-400 could be used to generate data on an analog aircraft, using its internal sensors, and send that data to a large orange flight recorder (which may have no internal sensors, and on an aircraft with limited or no digital instrumentation) to provide the ED-155 ADRS function needed to comply with ED-155, refer to TSO-C197
  2. AIRS-400 could be used to acquire image data and send that data to a large orange flight recorder to satisfy both the AIRS and ADRS requirement on a modern, digital, aircraft that are not factory equipped with a cockpit/flight deck image recorder
  3. AIRS-400 could be used to provide ADRS data and the ambient area microphone function to a large orange flight recorder that provides CVFDR functionality on an aircraft with primarily analog instrumentation, greatly simplifying that recording system’s deployment
  4. Et cetera

There are many different ways in which this new camera, with its high survivability and alignment with ED-155 data acquisition/generation requirements, can help our global customers show compliance to regulations and standards that may invoke full or partial compliance to the ED-155 standard. The table below helps summarize some of the ways in which this compliance can be achieved.

If, after reviewing this write-up and the above table, you’re still trying to understand the standard, your requirements, and how to show compliance, please contact Appareo. 

Part of our role in helping our customers to be successful is providing transparent, direct, assistance in navigating these standards to achieve an affordable and conveniently implemented system that truly fits the aircraft while showing compliance to required regulations.

David Batcheller
President & CBO

Garmin Wins FLYING Magazine’s 2021 Flying Innovation Award

Garmin Autoland brought home FLYING Magazine’s 2021 Flying Innovation Award for an “incredible leap forward in GA safety.”

Garmin Autoland won the 2020 Robert J. Collier Trophy in June, and now it’s added FLYING Magazine’s 2021 Flying Innovation Award to its résumé.

Certified in May 2020 on select general aviation aircraft, Garmin Autoland is the world’s first autonomous system designed to activate in an emergency to fly and land an aircraft with no human intervention. It can take over automatically after determining a pilot is unable to fly, or it can be engaged when the pilot or passengers press an activation button. It will then select an optimal destination to land, avoid known hazards, announce its intentions to air traffic control and passengers, and then proceed to land the airplane1.

“We honor the foresight and decade of effort invested by the team at Garmin Aviation, as well as those significant contributions of their OEM partners — Piper Aircraft, Daher and Cirrus Aircraft — to bring an automated landing within reach of general aviation pilots and passengers,” FLYING Magazine said in its announcement. “It’s a privilege to give the 2021 Flying Innovation Award for this incredible leap forward in GA safety to Garmin Aviation.”

Autoland is part of the Autonomí™ family, a suite of autonomous safety-enhancing technologies that are designed to make flying easier and safer for both pilot and passengers. Other Autonomí technologies include Electronic Stability and Protection (ESP™), emergency descent mode, Smart Rudder Bias and Smart Glide™.

“It is a tremendous honor to be recognized with the prestigious Flying Innovation Award for Garmin Autoland,” said Carl Wolf, Garmin vice president of aviation sales and marketing. “We are so proud of the forward-thinking mindset and dedication to safety of the Garmin team, our aircraft manufacturing collaborators and so many others that played a part in the more than a decade’s long mission of making this life-saving technology a reality.”

To learn more about the award, see FLYING Magazine’s article here.

¹See for Autoland system requirements and limitations

The post Garmin Wins FLYING Magazine’s 2021 Flying Innovation Award appeared first on Garmin Blog.

Five Tips for Planning Your Flight with is the largest flight planning company in North America and offers free, web-based flight planning and filing, plus a full range of premium services. In fact, it’s got so many features that it’s easy to overlook some of your options. Below, we’ve highlighted five of our favorite FltPlan® components, complete with some tips to help you take full advantage.

Expected Departure Clearance Time (EDCT)

Obtaining your EDCT up to 90 minutes before departure can help alleviate headaches for flight crews and passengers alike. FltPlan can help.

EDCTs can be obtained up to 90 minutes before your scheduled departure time. EDCT notices and Planned ATC Routes are a package. If you select that you’d like to receive your Planned ATC Route, we will also send you any EDCT that may be in effect along with your wheels-up time, i.e., your EDCT. If your flight is not flying in an area of EDCTs, then you will not receive any EDCT emails.

To opt in, EDCTs can be found on the Main Menu page under Flight Tracking > ATC Route/EDCT.

We also offer a link on your Active Flight Plan List that will direct you to the FAA’s EDCT website. The FAA website will let you know whether or not your flight will be affected by delays.

Aircraft Performance Customization

FltPlan flight planning service’s customizable Aircraft Performance Page now allows you to switch your fuel units between lbs, gallons and kg with just a click.

Go to Main Menu > Settings > A/C Performance, and select your aircraft. Under the Method 2 heading, look for the “Fuel Units” drop-down menu, and select your desired unit of measurement. The conversion calculations are completed for you automatically.

You can also complete the blanks in the Advanced Fuel Burn section. This is ideal for taking information from your flight manual, POH or QRH, where some of the altitudes are not listed. By clicking the “Fill in Blanks Below” button, any empty fields — such as climb speed, cruise speed, fuel burn, etc. — are filled in. When you save your changes, a warning message will let you know if you have any gaps.

Find Nearby Fuel Stops

Looking for places to stop for fuel? Our Find Fuel Stop feature (under Flight Planning > Find Fuel Stop) can do just that. Select your aircraft, departure and arrival, and the date of flight, and you’ll be able to customize the distance, runway length and fuel type you’re looking for on the search. Once completed, all nearby fuel stops will display along with the runway length, FBO and fuel pricing.

Adding the Operator Name to Your ICAO Format Flight Plan

The FAA requires that Part 135 operators indicate their operator name in Item 18. With FltPlan, it’s a simple one-time process to set up your account to include this information in all your ICAO format flight plans.

To add OPR information to your ICAO data, go to Main Menu > Settings > A/C ICAO Data, and select the A/C. Under Emergency Contact & Aircraft Operator / Owner Info, complete the Operator Name field.

While you’re there, please make sure your emergency contact name and phone number are current. This is the number that FltPlan will call if there is an incident or accident, so please don’t enter your own contact information.

Plan Fuel Loads for the Day at a Glance

Do you fly multiple legs in a single duty and want a quick way to look at needed fuel loads? Minimum fuel required can be quickly viewed from our Flight Listing page. The listing, which also includes fuel burn, displays requirements for both IFR and VFR flights. With Flight Listing, all your routing and flight information can be seen on one page, which can be printed out to bring with you.

The Flight Listing page can be accessed from Main Menu > Flight Planning > Flight Listing.

Going to Oshkosh? Come visit us!

We’re excited to get back to AirVenture Oshkosh and be reunited with our aviation family! Visit Garmin and FltPlan at our exhibit on Celebration Way to demo our latest, greatest products and services. Flying a Garmin equipped airplane? We will be offering up to $100 off select database packages for all your flying needs at Oshkosh this year, and we will have pros on-site at our Database Desk to help you find the best solution for you. The discount applies only to purchases at the show and includes select database regions. See here for more information.

The post Five Tips for Planning Your Flight with appeared first on Garmin Blog.

Garmin at EAA AirVenture Oshkosh 2021

It’s been more than 1 year, 11 months and 2 weeks since the last EAA AirVenture Oshkosh — not that we’re counting or anything — and we’re ready to get back. The Garmin exhibit will be even better this year, and we’re located at the same location: just west of Boeing Plaza along Celebration Way. We hope you’re looking forward to it as much as we are. Below are just a few of the reasons to get excited.

1) New avionics, features and upgrades.

See our latest products, features and upgrades and how they work in person with one of our avionics experts at the show. Updates this year include TXi EIS capabilities for turboprop twins, GI 275 with transponder control and display options, plus much more. We’ll even be demonstrating our Collier Trophy-winning Autoland technology, which will definitely be worth planning your day around.

2) Database updates and subscriptions available at the Garmin exhibit.

For the first time, database subscriptions will be available for purchase right from our EAA AirVenture exhibit. Select subscriptions will also be eligible for special AirVenture savings. Simply bring your flyGarmin login information and avionics system IDs, and our team will apply new databases and subscriptions to your flyGarmin account. Your databases will be ready and waiting for upload at the next data cycle.

3) Garmin seminar series and promotions.

Have a question about a Garmin product, or just want to know more about our solutions? Attend daily seminars presented by our team of experts, ranging from getting started with the Garmin Pilot™ app through our latest certified flight deck and display upgrades. Plus, if you attend a Garmin seminar at EAA AirVenture, you can be eligible for additional savings on select Garmin avionics. See the full seminar schedule here.

We also extended our dual GI 275 bundle promotion through Aug. 13 — so you can take advantage of savings through EAA AirVenture Oshkosh.

4) Garmin ambassador Mike Patey and “Scrappy.”

Be one of the first to see Mike Patey’s latest creation, “Scrappy.” Based on the popular Cub Crafters Carbon Cub airframe, Patey and his team enlarged the fuselage, beefed up the frame, installed a massive 780 cubic-inch piston engine and added plenty of custom features. And naturally, we’re partial to the panel. Our Team X group of pilots and experimental engineers worked with Mike to develop a unique Garmin panel for “Scrappy.” Mike will be spending time at our exhibit with “Scrappy” answering your questions, taking pictures and signing autographs. You won’t want to miss it.

5) Garmin ambassador FlightChops and his Van’s Aircraft RV-14.

Steve Thorne — better known as FlightChops — will also be showcasing his recently completed Van’s Aircraft RV-14 at our exhibit. Attendees will not only be able to see the Garmin-equipped panel but will be able to visit with FlightChops as well. Learn more about his aircraft in his YouTube series of build vlogs here.

6) GTN™ pilot training courses.

Our pilot training team is hosting in-person GTN series training courses at the Hilton Garden Inn on the Oshkosh, Wisconsin, airfield, July 26-30. These hands-on, scenario-based classes teach effective and efficient flight operation with an emphasis on flight planning and instrument procedures. Space is limited, so sign up now.

For our full schedule of EAA AirVenture Oshkosh events, click here.

The post Garmin at EAA AirVenture Oshkosh 2021 appeared first on Garmin Blog.

Maximizing a Light Twin with Garmin Avionics and Smart Rudder Bias

Learn how a Beechcraft Baron 58 operator relies on the latest Garmin avionics — including our GFC™ 600 autopilot with Smart Rudder Bias — to help reduce workload and increase confidence during single-pilot IFR operations.

When Marshall Chipley’s family business was looking for an airplane to help support their fleet of construction equipment, reliability and safety-enhancing features were top priorities. Their typical missions would begin from their headquarters in South Carolina, transporting replacement parts and tools throughout the region for paving, grading and earth moving machinery — sometimes twice a day and in instrument conditions. Chipley, the only pilot for the company, knew a light piston twin would offer the performance, reliability and safety features needed to accomplish their mission. Ultimately, they decided a 1996 Beechcraft Baron 58 best fit the profile.

Although a highly capable aircraft, an engine failure in a Baron or any light twin can present a safety risk of its own. With this consideration, and the higher workloads required for single-pilot IFR operations, Chipley and his family decided a Garmin-equipped cockpit would not only make the aircraft more capable but also enhance safety. The upgrade included G600 TXi, EIS TXi, a GFC 600 digital autopilot with Smart Rudder Bias, GTN™ 750 and more.

“It wasn’t just about wanting this [avionics] system to make my job easier,” Chipley said. “We also wanted this system to make this really great aircraft what it actually could be. If you get behind the airplane in a bad weather situation, you could get yourself in a bad spot. Having the situational awareness the Garmin products offered was a no-brainer.”

Precision control with the GFC 600 digital autopilot

One of the key benefits an autopilot can offer is helping reduce pilot workload, especially during flights in instrument conditions. The Garmin GFC 600 builds on that principle with a robust feature set, including underspeed and overspeed protection, a dedicated return-to-level mode button, Garmin Electronic Stability and Protection and much more.

“It doesn’t matter if I’ve got a 15-knot crosswind, [GFC 600] flies a perfect, straight glideslope and localizer all the way in … to be able to trust the system when I’m coming in to just above minimums … it gives the confidence that you can stay ahead of this airplane and make this a safe flight.”

Smart Rudder Bias: A helping hand in an engine power-loss event

A major advantage of operating a twin is the added peace of mind that comes with engine redundancy. If one engine loses power, the remaining engine could provide enough thrust to get the aircraft to the nearest airport for an emergency landing. However, an engine failure in a twin can present hazardous aerodynamic effects, forcing pilots to act quickly to maintain control of the aircraft. Chipley understood this risk, and because the Baron was equipped with the GFC 600 autopilot and yaw damper, TXi primary flight display and TXi EIS, adding Smart Rudder Bias was an easy decision.

“If I have a single engine issue on takeoff, I’ve got some help here,” Chipley said. “I know Smart Rudder Bias will be like a copilot to help me react quickly.”

Smart Rudder Bias monitors the aircraft throughout the entire flight, determines a one-engine inoperative condition, identifies which engine is affected during a failure and immediately applies control force to the rudder to help overcome yaw tendencies.

A seamlessly integrated avionics ecosystem

But having modern avionics wasn’t enough. Chipley wanted a system that was engineered to work seamlessly together, ensuring optimum performance.

“We wanted avionics that work well together. You can put things from different manufacturers together, but when something is designed in-house to work together, that’s the best it can be,” Chipley said. “It can’t be any better, because it was designed to work together. Having avionics that work effectively and efficiently was really important to us. That ecosystem didn’t exist anywhere else.”

The Garmin Flight Stream 510 wireless gateway provides this integration between the GTN 750 navigators, G600 TXi flight displays and iPads® running Garmin Pilot™.

“We use Garmin Pilot to download all of the databases, charts and supplements that we need. I go sit in the airplane 30 minutes before a flight and get everything uploaded,” Chipley said. “Then if I have a routing change from ATC, I can plug it in on my iPad or on the dash, and it’s always feeding the updated flight plan to the iPad, or from the iPad to the avionics,” Chipley said. “It’s nice to have updated information in-flight.”

Added confidence on every flight

Although the Baron took a quantum leap forward in capabilities with the Garmin upgrades, for Chipley, it’s the added confidence and sense of safety that strikes a chord.

“This isn’t just about having a nice system that makes flying fun, this is about safety,” Chipley added. “I’ve got a wife and three children — we have to make sure we come home.”

iPad is a trademark of Apple Inc., registered in the U.S. and other countries.

The post Maximizing a Light Twin with Garmin Avionics and Smart Rudder Bias appeared first on Garmin Blog.

Appareo Announces 4K Ultra HD Flight Data Recorder with Cellular Data Offload

“FDM or FOQA programs are valuable for fleet operators to monitor trends, identify areas of risk, and deploy training programs to mitigate those risks. However, it can be a challenge for mixed-fleet operators to effectively analyze their flight data when it is collected in multiple acquisition systems” said David Batcheller, President & CBO of Appareo. “The AIRS-400 is an ideal solution for those programs because it was designed for use in both modern and legacy aircraft,” Batcheller said.

With its one-day installation and simple setup, AIRS-400 is the easiest way to get started with an FDM program. Whether data is offloaded via SD card or cellular transmission, it can then be monitored, analyzed, and played back using Appareo’s suite of FDM/FOQA software tools, which are the easiest flight data monitoring software tools to use on the market today. Together with Appareo’s flight replay and analysis software, AIRS-400 is a powerful tool for debriefing flights, and provides critical troubleshooting insight for maintenance personnel. With the web-based software, Appareo EnVision, an FDM team can set up customized event triggers — derived from their standard flight ops — to create a comprehensive picture of the safety and performance of their crew and aircraft.

AIRS-400 joins the Appareo connectivity ecosystem, which includes some of the industry’s best lightweight flight data recording solutions, including Vision 1000, the flagship recorder by which Appareo pioneered FDM for light fixed-wing aircraft and rotorcraft.

“Considering our Vision 1000 customers who are interested in upgrading to UHD video and cellular data offload capabilities, AIRS-400 was designed to be a drop-in replacement for the Vision 1000 recorder,” said Kris Garberg, President of Appareo Aviation. “Customers who purchased Vision 1000 from Appareo, or received one in a new Airbus Helicopters delivery, can purchase AIRS-400 and plug the new device directly into the Vision 1000 harness and re-use the original mounting bracket.”

AIRS-400 is pending FAA certification and expected to be shipping in September. A full STC AML will be available — contact Appareo for information about pricing.

# # #

One GI 275 Is Good; Two Are Better

Now through June 18, 2021, Garmin is offering select dual GI 275 bundles at a special price.

There are several reasons to upgrade a traditional six pack with our GI 275 electronic flight instruments. It’s a modern, reliable and lightweight solution that lets you ditch the older, maintenance-prone, vacuum-style instruments. After the success of our G5 electronic flight instrument, we developed the GI 275 — building on what a small, cost-effective digital instrument could do. It boasts a bright touchscreen display, a wide range of instrument formats and functions, and even more features, capabilities and benefits.

And while upgrading an aircraft with a single GI 275 is beneficial — whether it be an attitude indicator, HSI, MFD or EIS version — upgrading with two GI 275 electronic flight instruments is even better. Take the attitude indicator and HSI, for example. There are a few ways these instruments can not only work together but also provide safety-enhancing features and cost efficiencies for aircraft owners and pilots alike.

More safety-enhancing situational awareness

We added even more safety-enhancing features to the GI 275, with the goal of bringing more situational awareness to the cockpit. An optional synthetic vision enablement overlays a rich, 3-D topographic view of terrain, traffic, obstacles and more, all within the GI 275 attitude display.

The HSI version of the GI 275 continues this theme with the popular HSI map. This feature creates an MFD-like map within the HSI that can incorporate weather data, SafeTaxi® diagrams, traffic, terrain and more.

Precise autopilot control and nav guidance — even with third-party autopilots

Another advantage the GI 275 attitude indicator has over our G5 electronic flight instrument is support for a broader list of third-party autopilots1, in addition to our GFC™ 500 autopilot. (For a complete list of third-party autopilots compatible with GI 275, click here.) The GI 275 can provide precise attitude information, plus flight director command bar cues, reference markers and much more on the bright display.

Reduce installation costs and keep your panel’s classic look

With a GI 275 attitude indicator and a GI 275 HSI combination, you get many of the same benefits larger format flight displays offer, but with a less intrusive installation. GI 275 can flush mount in a standard 3-1/8” round cutout, meaning no major panel modifications required. That translates to faster installs and lower overall installation costs, all while keeping the same classic look of your panel.

Digital redundancy

You can count on the reliability of the GI 275, but primary instruments often require backups. With the installation of a GI 275 attitude indicator and GI 275 HSI, you get the benefit of auto-reversionary mode2. This mode kicks in and displays attitude and heading data on the remaining HSI or MFD if an outage should occur. If that doesn’t provide enough peace of mind, then consider the GI 275 attitude indicator’s backup battery — it provides up to 60 minutes of power to get you home.

For more information about our GI 275 electronic flight instrument, contact your local Garmin authorized dealer or visit

Now through June 18, 2021, Garmin is offering dual GI 275 bundles at a special price. Visit our promotions page to learn more.

1Requires GI 275 with built-in autopilot interface

2Both GI 275 units must be ADAHRS versions to support reversionary capability

The post One GI 275 Is Good; Two Are Better appeared first on Garmin Blog.

Fan-favorite Garmin Pilot Features

Recently we asked @GarminAviation social media followers to weigh in on their favorite Garmin Pilot™ features, and the results are in. Your answers were as varied as the feature list is long, which isn’t at all surprising. Between all the flight planning, digital charts and situational awareness tools available on both the standard and premium plans, you have a lot to choose from when attempting to name just one feature as your favorite.

There were a few common themes among your answers, though, and we decided to share those with you. Is your favorite feature listed here? If not, let us know at @GarminAviation.

1. Apple® and Android™ Compatibility

Unfortunately, it’s not always a given that your cockpit solutions will be compatible with whatever operating system you choose to operate on your mobile devices. But with Garmin Pilot, your device will be ready to fly regardless of whether you prefer iOS or Android.

2. Avionics Connectivity Tools

One of the biggest advantages of choosing Garmin for your avionics solutions is that many of our products integrate directly with Garmin Pilot — so whether we’re talking about engine indication systems or Flight Stream 510 with database concierge, you can rest assured that wireless connectivity will be seamless.  

3. Automatic Logbook

Garmin Pilot will automatically generate logbook entries, support manual entries, track flight currency information, support endorsements, generate reports and seamlessly integrate with flyGarmin®.

4. Weather

With real-time radar and satellite imagery, lightning updates, icing forecasts and more, you’ll be prepared to navigate whatever the day’s weather decides to throw at you, as long as you’ve got an internet connection or a compatible datalink. One Instagram user wrote that it “saves my buns” — we concur.

5. Fuel Information

Fuel is not something you want to be guessing about — which is why so many of you love the Garmin Pilot fuel-planning tools with features such as estimated fuel required and fuel remaining at waypoint.

When it comes to Garmin Pilot, there’s a lot to love — but every list has to end somewhere, right? To learn more about the features everyone’s raving about, click here.

Apple is a trademark of Apple, Inc.

Android is a trademark of Google LLC.

iOS is a trademark licensed to Apple, Inc.

The post Fan-favorite Garmin Pilot Features appeared first on Garmin Blog.

Five Reasons to Choose Garmin Aviation Government and Defense Solutions

At Garmin we have the highest-value, most comprehensive avionics lineup in the industry — and they are all capable of meeting the unique needs of local, state and federal government agencies. Whether you’re looking for integrated flight decks or stand-alone products like flight displays, navigators, audio panels, sensors and more, we’re here to help you stay mission-ready with our CNS-/ATM-compliant commercial avionics solutions. 

Here are five ways that innovative Garmin products can help you modernize your mission:

1. Commercial-off-the-shelf Solutions (COTS)

Ready to hit the runway immediately? Garmin COTS solutions speed up aircraft upgrade and implementation time, and you simultaneously improve life-cycle costs with new, zero-time, warrantied solutions. With Garmin you’ll also have access to an award-winning training and support network, with in-person training and on-demand, web-based video instruction available from the Garmin Aviation Training team.

2. Open System Architecture Concept

Looking to integrate with mission equipment and hardware? We can help. Interface with existing, third-party mission computers, functions and sensors including IFF, SAASM GPS, HMCS, ARC 210c, TACAN and more while getting greater functionality and situational awareness in the cockpit. 

3. Wide-ranging Product Lineup

Garmin offers everything from fully integrated flight decks (IFD), like the G5000H™ or G3000®, to stand-alone flight displays, navigators, flight control systems, audio panels, sensors and more. Our lineup of retrofit solutions is scalable and can optimize a variety of missions.

4. Modern, Reliable Upgrade Solutions

Integrate Garmin solutions into your new airframes or extend the life of your legacy fleets all while addressing known obsolescence issues. Garmin products incorporate the modern technology that you expect, including touchscreen controls and clear, simple and intuitive user interfaces. You can also take advantage of features designed to enhance situational awareness and safety, like our synthetic vision technology (Garmin SVT™) and HTAWS solutions.

5. Global Distribution and Support Network

Operating across the globe? Garmin is able to keep you mission-ready around the world via its global distribution and support network. The Garmin Aviation Training team and their resources are also available worldwide. Ready to modernize your mission? Contact a Garmin representative today.

The post Five Reasons to Choose Garmin Aviation Government and Defense Solutions appeared first on Garmin Blog.