Tag Archives for " asset tracker "

Does your supplier own your data, or do you?

The world is getting more and more connected. I’m connected to my car, my kid’s watch, and my doorbell. If I were to buy a new tractor, loader, or trencher, I’d expect to be connected to that too. 

For equipment manufacturers considering their connected strategy, there are two approaches. We’re going to talk a bit about each of those approaches, in general I’m an advocate of the Open approach which is described below.

Open and Closed Approaches

At a really high level, there are two approaches to making equipment connectivity happen. Closed and Open.

The Closed approach is an approach where a supplier brings a full system and solution for connectivity. This includes the onboard telematic unit, the backend/cloud service, and the mobile/web experience. This is attractive because it is an easy button, one stop shop, for connecting a machine. The downside is that you are no longer in control of your data, your customer’s data, and you’re going to rely on the permissions granted by a supplier for information that is increasingly critical to your business. They say data is the new oil, you’ve given your supplier your mineral rights.

The Open approach is an approach where a supplier brings an open system for a telematic controller or asset tracker. This means that you can change the software on the system (either internally or with contract resources). This typically means that you need to develop your own backend/cloud service and mobile/web experience. Undoubtedly, this is harder and requires more effort than a turn-key supplier-delivered approach. As they say, nothing worthwhile is ever easy and we’ll discuss the upside below, but the key is that you control your data, how it is used, and can direct the path of value added services that are built off this data. This data, this digital oil, is incredibly valuable in so many ways. 

Control of Data

Before discussing data and value propositions, it is important to understand that to achieve these value propositions you must control the data. There are different perspectives on data ownership. Some people believe that the operator should control the data. Others contend that the ownership of the data should reside with the equipment manufacturers. In any event, your supplier should not own or control your data. It is simply too valuable to have to ask for permission to access, to modify, and to mine. 

Decreased Costs

Access to this data provides opportunities for the reduction in costs or avoidance of expenses. These cost reductions come in a number of different packages. Having data about the fleet and its operation can lead to value added services that improve fleet safety, which limits litigation and settlement expenses with a reduction in incidents and accidents. This data can also be used to provide the evidence necessary to negotiate with insurance carriers, providing critical information necessary to manage this growing industry expense. Lastly, the data can be used to understand the circumstances related to warranty claims which can lead to the avoidance of payment on unjust claims and the improvement of design to eliminate future claims in related areas. 

Increased Revenue

Control over the data creates potential for delivery of value-added services to customers, which creates potential for new streams of revenue. Such services can include things like web-based analytics that allow for more productive utilization of fleet assets and leveraging data to efficiently schedule and use expected machine downtime for maintenance. Interesting opportunities can also emerge in the monetization of third-party, value-added, services through APIs that allow selective access to your data. In these cases, a programmatic interface is created to allow additional companies to access data, at the customer’s request, to provide more niche services at high value. The access to that data can be monetized, with a fee charged to the third party, giving you a portion of their revenue stream without any of the development or maintenance burden of the niche application. 

Expansion Potential

Whenever one of our customers really starts to dig into their data, two things emerge. The first is value. The second is more questions that, if answered, are expected to uncover additional exciting business value.

This is where an open platform is also critical. Answering those questions can involve changes to the software on the telematic unit, changes to the backend architecture to mine/compare/contrast data in different ways, or changes to the mobile experience to better present customer features or track customer behaviors. In this way, the cycle of data acquisition, analysis, and value creation becomes an evergreen – but only if you have the control necessary to drive the evolution of your connected ecosystem. This only happens in an open platform.

Flexibility

We believe you should have the freedom to choose. You should be free to choose which telematic supplier you select for different equipment platforms. You should be free to choose which mobile devices are compatible with your solution. In an open system, you are free to specify, implement, and manage these choices. A constraint of a closed system is that you’re locked into the offerings, and mobile device support, from a single supplier. That supplier may be great, but then you’re also locked into the timelines associated with which that supplier supports new generations of connectivity technology (4G, 5G, etc) as well as the timeliness which with that supplier can offer you access to connectivity services in new countries.

Control of Security

Open doesn’t mean unsecure. Open means having the freedom to impose your cyber rules and requirements on the system, ensuring that your security preferences are embodied in your connected solution. When you own your security you have the comfort of certainty. When you’re working in a closed party system, there are always questions about the security and control of access to your equipment, your data, and your customer’s data.

David Batcheller
President & CBOhttps://appareo.com/2021/03/23/does-your-supplier-own-your-data-or-do-you-2/

Configuring Wake Modes to Maximize Battery Life in Cellular Asset Trackers

Operators want to use their expensive machines (loaders, sprayers, excavators, aircraft, etc.) as much as possible, because at the end of the day, business assets are more of an asset when they’re put to work. When a fleet is distributed over a large area, knowing where equipment is so it can be put to work can be a challenge.

Over the last decade, it has become common for larger or more expensive equipment to be delivered from the original equipment manufacturer (OEM) with a telematics standard. Sometimes it’s a simple position reporting modem, other times there’s a huge volume of operating detail being delivered to the cloud. In any event, it makes it much easier for operators to start tracking a fleet of assets when the equipment comes standard with tracking capability.

The challenge

There are still holes when trying to conduct an efficient operation with a full picture of the fleet. These holes exist because many fleets have equipment that did not come with factory telematics.

For example:

  • Tenders, dump trucks, and other Milk Run equipment that create the maximum productivity of a working asset also typically do not have stock telematics
  • Specialized equipment produced in lower volumes by smaller OEMs, and therefore not factory-equipped with tracking features
  • Towed equipment that is not electrified (e.g. trailers, carts, screens, mowers, balers, tedders, rakes, grinders, chippers, etc.) and as a result have no built-in tracking connectivity
  • Expensive attachments that are unpowered
  • Older equipment that is in good working order but was delivered before connectivity was standard among major OEMs

Considering these holes, you may only be able to track a portion of the fleet. Even if it’s 75%, it’s not good enough. A project can’t happen if only 75% of the equipment is at the site. That makes these holes important to fill, but it also has to be easy. Operators don’t have the time or the interest to assemble a pile of dissimilar aftermarket technology offerings into a fleet tracking solution — they have a business to run.

The good news

In a previous blog (Understanding 4G LTE Categories) we discussed new kinds of cellular technology that have emerged as a portion of 4G offerings. These technologies, specifically NB-IoT and M1, create opportunities for very rugged and affordable “slap and track” cellular asset trackers. These kinds of trackers can be attached to any piece of equipment, and by using their own battery they can report its location for years.

This can be an easy fix to the problem, but getting real satisfaction out of these solutions is all about managing the battery life of the unit. Why?

  • Many rugged asset trackers are made without replaceable batteries in order to achieve an IP67 or IP69K rating. Although these trackers are cheap, they need to be discarded when the battery is used up.
  • Trackers with replaceable batteries lose the “easy fix” appeal once you’re spending time tracking down machines to charge their units or replace batteries. The appeal of this solution is ruined if you can’t leave a machine alone for at least a season — ideally for the life of the machine.

So, how do you use “slap and track” solutions to the maximum benefit of your business? I know people hate this answer, but it depends. As you consider your equipment tracking goals, it’s important to understand battery life and wake modes.


Understanding battery life in cellular asset trackers

Battery life is fixed, meaning you start with a bucket of energy and that is all you get. Therefore, to achieve maximum customer value, the focus needs to be about extending the duration of time that a rugged asset tracker can be used.

To maximize that energy:

  • Devices need to be off as much as possible
  • When on, devices should sparingly use the components that use a lot of energy (e.g. cellular and GPS)

Device manufacturers have put a bunch of battery management tools into these devices, and the asset tracking ecosystem, to make tracking as easy as possible. It varies by manufacturer, but when a device is advertised to have a 5-year lifetime, that’s typically based on an expectation of a few thousand positional reports over its lifetime. That works out to 1-2 position reports per day for five years. So, while the device’s lifetime is marketed in the form of years, in reality the lifetime is based on the number of positional reports utilized.


Understanding how different wake mode configurations affect battery life

Making the most of the battery management tools should get careful consideration as you deploy trackers. We recommend consulting with your tracking services or hardware supplier to dial this in as early as possible. Devices can typically be configured to report in the following ways (organized from most power hungry to least power hungry):

Periodic continuous reporting

For trackers that are integrated into the machine and connected to vehicle power, this is an easy and inexpensive thing to do. However, most customers with battery powered trackers will not want to use this mode. Having the device report every minute, or even every hour, will consume a lot of battery life.

Wake and report on movement

Many asset tracking devices include an accelerometer. These are great because they use minimal energy and can be used to wake the device when it moves. This is helpful if you want to know when equipment is moving from site to site or when equipment has begun working, for example. Depending on the tracker’s capabilities, it might be possible to set the device to report on movement but then to “snooze” for a period of time (e.g. 4 hours). A word of caution, however: if you can’t snooze its reporting behavior, this feature could run through the battery life quickly.

Wake and report on rest

This is related to the movement feature, but it notices when the device stops moving for a period of time (typically configurable) and then reports the device position. It’s an inverted version of the previous feature with the same benefits and challenges.

Start of day / end of day position reporting

This feature is generally easy to configure, easy to implement, and very friendly for battery life. Simply pick a time of day and have the unit report its position at that time every day. This can give you an overview as to where the equipment was left at the end of the day, giving you an opportunity to dispatch resources effectively at the start of the following workday. When combined cleverly with some of the above features (e.g. report equipment position at 5:00 PM, then report on movement in the event someone moves it after hours), it can be used to give an effective and timely overview of fleet positions while using minimal battery.

Wake on demand

This easy to use feature is very powerful and enabled by the newest generation of cellular technologies. For those of you who want to push your glasses a bit higher on your nose and nerd out with us about how this feature works, we’ll dig deeper in a future blog. For this post, we’ll talk about the capability at a high level so you can understand how to exploit it.

Using a computer or mobile device, you ask the equipment to report its location. This feature sends a message over the cellular network, which is stored in a mailbox of sorts. The device periodically checks that mailbox, using very limited energy, to see if it needs to report in. If there’s a request waiting, it reports its location.

The beauty of this feature is that whenever you need to know the location of an asset, you can have the device report in at the push of a button. The report doesn’t come back in seconds, because typically the device is configured to “check the mailbox” at scheduled intervals in order to minimize energy use. However, even waiting a few minutes to get the devices’ location is MUCH faster than driving from site to site looking for it.

Do you want future connectivity advice, insights, and information delivered to your door? Join our email list, and follow us on LinkedIn.


David Batcheller – President & CBO


Join our email list

Follow us on LinkedIn

https://www.appareo.com/2020/12/14/configuring-wake-modes-to-maximize-battery-life-in-cellular-asset-trackers/

Appareo Releases Rugged On-Demand Cellular Asset Tracker for Off-Highway Equipment

NEWS RELEASE

Appareo Releases Rugged On-Demand Cellular Asset Tracker for Off-Highway Equipment

With the telematics and logistic groundwork laid by Razor Tracking, Appareo has developed the most advanced and rugged asset tracking device, at an affordable price.

FARGO, North Dakota (June 11, 2020) — Appareo today announced a new product in the company’s line of rugged cellular asset trackers. The Appareo AT-130 (IP69K) will launch first with partner Razor Tracking, a leader in off-highway asset tracking software. These two North Dakota companies joined forces to develop an affordable on-demand asset tracking solution with unmatched durability for use in any industry.

Appareo leveraged its experience building rugged, off-highway, telematic and electronic products to develop an inexpensive, but performant, super rugged cellular product. Razor Tracking, the industry-leading software developer for fleet tracking and operations management, provided the initial logistics software for the AT-130, and laid the groundwork for future logistic integrations.

The AT-130 is an IP69K-rated asset tracking device with cellular and GPS capabilities, a 5-year battery life, and industrial operating temperature range (-40 ℃ to +70 ℃). The IP69K rating certifies the device’s ability to withstand an 80℃ pressure wash at close distance, making this tracker uniquely suited for industrial applications where such cleaning is routine and necessary.

“The affordable AT-130 from Appareo will provide unmatched durability to any industry and bringing this device to market will help our customers operate on another level,” said Eric Mauch, President of Razor Tracking.

“Razor Tracking is the leading software provider for fleet tracking and operations management, especially in the off-highway environments in which we work,” said David Batcheller, President & CEO of Appareo. “We’re very excited to work with them as the launch software partner for the AT-130.”

Appareo leveraged its experience in GPS and inertial technologies to equip the device with high-performance positioning and motion-sensing capabilities. In addition to the cellular and GPS capabilities, Appareo’s proprietary motion-sensing algorithms ensure that motion-based reporting is done based on true machinery repositioning. This helps extend device battery life and reduce nuisance alarms when equipment doesn’t truly relocate.

Battery life is impacted by the frequency with which the device is required to report its position. If the AT-130 tracker reports its position once per day and occasionally also reports its position on demand (e.g. because of a message from a user’s web or mobile application demanding a position update), a customer could expect the battery to last more than five years. With lower-frequency reporting the AT-130 battery could last even longer.

Integrating the AT-130 into a tracking system or manufacturer backend is easy because Appareo built the AT-130 communication interface based on common standards and industry practices. By preventing customers from having to overcome proprietary communication formats or practices, integration of the device into customers’ software ecosystem is straightforward.

AT-130 regulatory and compliance certifications include Verizon Networks, Vodafone International, CE, IC, FCC, RCM, PTCRB, and GCF.

The AT-130 is designed and manufactured in the United States. Appareo offers easy device and data plan management through the company’s custom Data Services Platform, where customers can activate and manage their tracking devices. To learn more about Appareo’s line of asset trackers, visit appareo.com/products/asset-tracking.

# # #

About Appareo
Appareo is a recognized leader in the custom design, development and manufacture of innovative electronic and software solutions for aerospace and terrestrial applications. Through the creative application of cutting-edge technologies, Appareo creates complex end-to-end solutions that include both mobile and cloud-based components. Founded in 2003, the company is privately held and headquartered in Fargo, N.D. All products are built and supported in the USA.

About Razor Tracking, Inc.
Razor Tracking has been headquartered in Fargo, N.D., since 2012. Razor Tracking is recognized for providing the most advanced fleet tracking and management software platform in the nation. Razor Tracking provides a powerful and easy-to-use platform to track vehicles and assets to help manage your operation in any industry. The platform is proven to maintain schedules, help with dispatching, increase overall efficiency, and improve your bottom line. For more information, please visit razortracking.com.

https://www.appareo.com/2020/06/11/appareo-releases-rugged-on-demand-cellular-asset-tracker-for-off-highway-equipment/